Uni-directional coupling between tibiofemoral frontal and axial plane rotation supports valgus collapse mechanism of ACL injury.
نویسندگان
چکیده
Despite general agreement on the effects of knee valgus and internal tibial rotation on anterior cruciate ligament (ACL) loading, compelling debate persists on the interrelationship between these rotations and how they contribute to the multi-planar ACL injury mechanism. This study investigates coupling between knee valgus and internal tibial rotation and their effects on ACL strain as a quantifiable measure of injury risk. Nineteen instrumented cadaveric legs were imaged and tested under a range of knee valgus and internal tibial torques. Posterior tibial slope and the medial tibial depth, along with changes in tibiofemoral kinematics and ACL strain, were quantified. Valgus torque significantly increased knee valgus rotation and ACL strain (p<0.020), yet generated minimal coupled internal tibial rotation (p=0.537). Applied internal tibial torque significantly increased internal tibial rotation and ACL strain and generated significant coupled knee valgus rotation (p<0.001 for all comparisons). Similar knee valgus rotations (7.3° vs 7.4°) and ACL strain levels (4.4% vs 4.9%) were observed under 50 Nm of valgus and 20 Nm of internal tibial torques, respectively. Coupled knee valgus rotation under 20 Nm of internal tibial torque was significantly correlated with internal tibial rotation, lateral and medial tibial slopes, and medial tibial depth (R(2)>0.30; p<0.020). These findings demonstrate uni-directional coupling between knee valgus and internal tibial rotation in a cadaveric model. Although both knee valgus and internal tibial torques contribute to increased ACL strain, knee valgus rotation has the ultimate impact on ACL strain regardless of loading mode.
منابع مشابه
The anterior cruciate ligament injury controversy: is "valgus collapse" a sex-specific mechanism?
BACKGROUND Anterior cruciate ligament (ACL) injury is a devastating injury that puts an athlete at high risk of future osteoarthritis. Identification of risk factors and development of ACL prevention programmes likely decrease injury risk. Although studies indicate that sagittal plane biomechanical factors contribute to ACL loading mechanisms, it is unlikely that non-contact ACL injuries occur ...
متن کاملمقایسه کینماتیک خطرساز آسیب رباط متقاطع قدامی بین زنان و مردان حین مانور برش
Background: Women and men significantly differ in the extent of anterior cruciate ligament injury. Based on the evidence, gender especially contributes in non-contact mechanism of anterior cruciate ligament (ACL) injury. The purpose of this study was to compare the movement patterns of the ACL injury risk between men and women during cutting maneuver. Methods: 13 men and 13 women of national...
متن کاملCoupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study.
Knowledge of the coupled motions, which develop under compressive loading of the knee, is useful to determine which degrees of freedom should be included in the study of tibiofemoral contact and also to understand the role of the anterior cruciate ligament (ACL) in coupled motions. The objectives of this study were to measure the coupled motions of the intact knee and ACL-deficient knee under c...
متن کاملThe effects of a varus unloader brace for lateral tibiofemoral osteoarthritis and valgus malalignment after anterior cruciate ligament reconstruction: a single case study.
We investigated the immediate effects of a varus knee brace on knee symptoms and knee-joint biomechanics in an individual with predominant lateral tibiofemoral joint osteoarthritis (TFJOA) and valgus malalignment after anterior cruciate ligament (ACL) reconstruction. A varus unloader brace was prescribed to a 48-year-old male with predominant lateral radiographic and symptomatic TFJOA and valgu...
متن کاملHow Anterior Cruciate Ligament Injury was averted during Knee Collapse in a NBA Point Guard
Non-contact anterior cruciate ligament (ACL) injuries occur with rapid decelerations and pivoting. A recent injury to a high-level National Basketball Association (NBA) player demonstrated neuromuscular control and injury-sparing mechanisms that resulted in only minor ligament injury to the medial collateral ligament. We analyzed biomechanical mechanisms via publically available orthogonal 2-D ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 48 10 شماره
صفحات -
تاریخ انتشار 2015